Preliminary experience with selective laser sintering models of the human temporal bone.

نویسندگان

  • R A Levy
  • S Guduri
  • R H Crawford
چکیده

PURPOSE To assess the accuracy of three-dimensional models of the human temporal bone generated from CT data. METHODS Thin-section CT of a left human cadaveric temporal bone was performed using multiple-scan planes (axial, coronal, and sagittal) at 1.5-mm section thickness and 0.25-mm pixel size with an edge-enhancement two-dimensional algorithm. CT data were converted to toggle point format based upon a threshold value of 200 (approximately -830 HU) obtained from prior experimentation with a CT phantom. Selective laser sintering of polycarbonate powder was performed at a beam diameter of 0.060 inches (1.5 mm), 100 scan lines per inch, layer thickness of 0.010 inches (0.25 mm), and layer repeat factor of 4. The polycarbonate models were then scanned in the axial, coronal, and sagittal planes and compared with the original CT data. Anatomic dissection of the models was performed for further verification of the imaging findings. RESULTS Models of high anatomic accuracy were generated. Shortening by a factor of 0.67 along the Z axis secondary to the layer repeat factor of 4 resulted in distortion of the models. Distortion in the XY plane ranged from 0% to 20%. Differences in model accuracy based on the initial CT scan plane were observed. A significant amount of nonsintered or partially sintered polycarbonate resulted in intermediate density on the CT images. CONCLUSIONS Selective laser sintering can result in accurate modeling of detailed anatomic structures in the human temporal bone. Further investigation of materials and factors contributing to the accuracy of selective laser sintering in the manufacturing of high-resolution anatomic models is warranted.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preliminary Experience witb Selective Laser Sintigrapbic (SLS) Models of tbe Human Temporal Bone

Materials and Methoqs Thin section CT of a left human cadaveric temporal bone was performed using multiple scan planes (axial, coronal, sagittal) at 1.5 mm slice thickness, 0.25 mm pixel size with an edge enhancement 2D algorithm. CT data was converted to toggle point format based upon a threshold value of 200 obtained from prior experimentation with a CT phantom (unpublished data). Selective L...

متن کامل

Selective Laser Sintering and Freeze Extrusion Fabrication of Scaffolds for Bone Repair Using 13-93 Bioactive Glass: a Comparison

13-93 glass is a third-generation bioactive material which accelerates the bone’s natural ability to heal by itself through bonding with surrounding tissues. It is an important requirement for synthetic scaffolds to maintain their bioactivity and mechanical strength with a porous internal architecture comparable to that of a human bone. Additive manufacturing technologies provide a better contr...

متن کامل

Sintering Study of Polyamide 12 Particles for Selective Laser Melting

Selective Laser Melting is an additive manufacturing technique, using a laser to promote the fusion followed by the solidification of a powder bed into a component. One of the most interesting topics about this process is the coalescence behavior of particles taking place in the powder bed during exposure. The coalescence of particles has been investigated in different fields of materials. Poly...

متن کامل

Selective Laser Sintering of 13-93 Bioactive Glass

Bioactive glasses are more promising than biopolymers in fabricating scaffolds for bone tissue repair because they convert to hydroxyapatite, when implanted in vivo. Both direct and indirect selective laser sintering (SLS) methods of 13-93 bioactive glass were considered in this research to study the feasibility of fabricating scaffolds for bone repair applications. Stearic acid was used as the...

متن کامل

Bioceramic Scaffolds Fabrication by Rapid Prototyping Technology

This paper describes a rapid prototyping (RP) technology for forming a hydroxyapatite (HA) bone scaffold model. The HA powder and a silica sol are mixed into bioceramic slurry form under a suitable viscosity. The HA particles are embedded in the solidified silica matrix to form green parts via a wide range of process parameters after processing by selective laser sintering (SLS). The results in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • AJNR. American journal of neuroradiology

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 1994